Xah Talk Show 2025-11-04 Ep709 Wolfram Language Coding and Tutorial, List Operation. Emacs Workflow.

xah talk show ep709 19d4c
xah talk show ep709 19d4c

Video Summary (AI Generated, Human verified.)

The video is a coding session where the creator updates his Wolfram Language tutorial, focusing on list operations for beginners.

He demonstrates and refines examples for several Wolfram Language functions:

  • Join (concatenating lists) (5:03)
  • Union, Intersection, and Complement (set operations) (6:50, 9:03, 10:06)
  • Table (generating lists and rectangular arrays, similar to list comprehension in other languages) (15:25, 35:25)
  • Range (generating flat lists with specified steps) (57:18)
  • The creator also discusses technical writing and documentation best practices, explaining his choices for naming conventions and formatting within his tutorial. He uses Emacs as his text editor and occasionally goes on tangents about software documentation styles and personal anecdotes.
xah talk show ep709 ai texinfo 209a8
xah talk show ep709 ai texinfo 209a8
xah talk show ep709 201d6
xah talk show ep709 201d6
Table[ x, 3]
(* {x, x, x} *)

Table[ 2, 3]
(* {2, 2, 2} *)

Table[ x, {x, 3}]
(* {1, 2, 3} *)

Table[ x, {x, 4, 7}]
(* {4, 5, 6, 7} *)

Table[ x Pi , {x, 4, 7}]
(* {4*Pi, 5*Pi, 6*Pi, 7*Pi} *)

Table[ x^2 , {x, 4, 7}]
(* {16, 25, 36, 49} *)

Table[ x^2 + y , {x, 4, 7}]
(* {16 + y, 25 + y, 36 + y, 49 + y} *)

Table[ {x^2 + y, x y+z} , {x, 4, 7}]
(* {
{16 + y, 4*y + z},
{25 + y, 5*y + z},
{36 + y, 6*y + z},
{49 + y, 7*y + z}} *)

(* HHHH------------------------------ *)

(* 2 dimensional examples *)

Table[ f[x,y], {x, 3}, {y, 2}]
(* 
{
{f[1, 1], f[1, 2]},
{f[2, 1], f[2, 2]},
{f[3, 1], f[3, 2]}
} *)

Table[ x I + Pi y, {x, 3}, {y, 2}]
(* {{I + Pi, I + 2*Pi}, {2*I + Pi, 2*I + 2*Pi}, {3*I + Pi, 3*I + 2*Pi}} *)

Table[ (x I)^2 + Pi y/z, {x, 3}, {y, 2}, {z, -5,-3}]

(* {{{-1 - Pi/5, -1 - Pi/4, -1 - Pi/3}, {-1 - (2*Pi)/5, -1 - Pi/2, -1 - (2*Pi)/3}}, {{-4 - Pi/5, -4 - Pi/4, -4 - Pi/3}, {-4 - (2*Pi)/5, -4 - Pi/2, -4 - (2*Pi)/3}}, {{-9 - Pi/5, -9 - Pi/4, -9 - Pi/3}, {-9 - (2*Pi)/5, -9 - Pi/2, -9 - (2*Pi)/3}}} *)