Xah Talk Show 2025-03-23 Ep633 Google Chrome, Firefox Censor Millions Websites, Wolfram Language, Pedal Curve

Clear[NegativePedalPlot]

NegativePedalPlot::usage =
"NegativePedalPlot[{xf,yf}, {min,max,step}, {x0,y0}]

draws the negative pedal lines of the parametric curve
{xf,yf} at points
{xf,yf}& /@ Range[min,max,step].

xf and yf must be pure functions with head Function.
This is a quick hack function written for experienced
Mathematica users.
Example:
NegativePedalPlot[{Cos@#&, Sin@#&}, {0,2 Pi, 2 Pi/30},{.8,0}]";

NegativePedalPlot[{xf_Function,yf_Function},
	{tmin_,tmax_, dt_}, {a_,b_}, opts___Rule]:=
	Module[{curvePoints, curvePointsGP,pedalPointGP,
		linesToCurveGP, negativePedalLinesGP},
		curvePoints = N@ {xf@ #,yf@ #}& /@ Range[tmin,tmax,dt];
		curvePointsGP = {Hue[0],PointSize[.02], Point[#]}& /@ curvePoints;
		pedalPointGP = {Hue[.7], PointSize[.02], Point[{a,b}]};
		linesToCurveGP = N@ Line[{{a,b},#}]& /@ curvePoints;
		negativePedalLinesGP = Line[{
				100 Reverse[Normalize[N[#-{a,b}]]{1,-1}] +#,
				-100 Reverse[Normalize[N[#-{a,b}]]{1,-1}] +#
			}]& /@ curvePoints;
		Show[
			Graphics[{negativePedalLinesGP,
				curvePointsGP, pedalPointGP}],
				opts
		]
	]

(* HHHH------------------------------ *)

NegativePedalPlot[
{ Function[{x}, x], Function[{x}, x^2/4 ] },
{-7, 7, .25},
{0, 1},
Axes -> True, AspectRatio -> Automatic,
PlotRange -> {{-7, 7}, {-1, 18}}]
xah talk show 2025-03-23 2c3f0
xah talk show 2025-03-23 2c3f0
xah talk show 2025-03-23 2ccd1
xah talk show 2025-03-23 2ccd1
xah talk show 2025-03-23 2ccf3
xah talk show 2025-03-23 2ccf3
xah talk show 2025-03-23 2d383
xah talk show 2025-03-23 2d383
xah talk show 2025-03-23 2ec3a
xah talk show 2025-03-23 2ec3a