
NEW ALGORITHMS FOR IMPLEMENTING

AND INTERPOLATING ROTATIONS

Bob Palais and Richard Palais

Preliminary Version March 21, 2008

Abstract. We have not found in the computer graphics literature what we believe

may be the simplest algorithm for implementing a 3D rotation with a mouse. We

present this algorithm, and observe that it leads to new mathematical realizations
of the 3D rotation group and its double-cover, the unit quaternions. We use this to

obtain an algorithm for interpolating rotations of a 3D scene that is more efficient

than the standard quaternion based methods, and also to derive the quaternion
composition formula from the geometry of 3D rotations.

1. Implementing prescribed rotations by reflecting pairs.

There are many methods well-known in computer graphics for implementing
a three-dimensional rotation R ∈ SO(3) specified by two-dimensional user input
from various controllers, e.g., a joystick, a trackball, or a mouse (e.g., [5–7, 22, 40–
41]). These algorithms are typically based on a dynamic mapping of the position
of the controller to a unit vector in R3 (we describe below the procedure for the
case of a mouse used as a virtual trackball). Such a mapping converts the initial
position of the controller to a unit vector uI ∈ R3, and when that position is
moved, the final position is converted to a second unit vector uF ∈ R3. For the
object on the screen to follow the mouse naturally, as if it were being dragged,
we must perform a rotation ρ on it satisfying uF := ρuI . But there are infinitely
many such rotations, since we could also perform any rotation about uI , followed
by ρ, followed by any rotation about uF , and still have uI map to uF . However,
if uF 6= −uI , there is a unique rotation that takes uI to uF and that acts as the
identity on the orthogonal complement of V := span{uI ,uF }. It is this rotation
that is conventionally specified by giving a unit vector and its image, and we call
it the transvection ([4, 21, 49]) taking uI to uF , denoted T(uI ,uF). Note that, by
orthogonality, T(uI ,uF) preserves V .

In the computer graphics literature, a number of different methods have been
recommended for implementing T(uI ,uF), including: construction of the rotation
matrix (Chen, [5–7, 28)), using axis-angle (Euler-Rodrigues) formulas ([14, 26,
31, 32, 35]), construction of a unit quaternion, Q, and then conjugating by Q or
else converting Q to a matrix (Shoemake, [40–41]), and even using Euler angles.
Similar needs for specifying, implementing, and composing rotations, and proposed
solutions in terms of quaternions and matrices also arise in other fields, including
robotics ([11, 27, 37, 38]), photogrammetry ([25]), and rocket motion control ([45]).

Key words and phrases. rotation, reflection, transvection, quaternion.

The first author was supported in part by the NSF under the award DUE-0231459.

1

2 BOB PALAIS AND RICHARD PALAIS

Here we present a simpler approach that we have not seen discussed elsewhere
in the computer graphics literature and that we feel has numerous advantages. Let
s = uI + uF and c = 2

s·s . Then for any v ∈ Rn, if we let w = 2(v · uI)uI − v,
we find T(uI ,uF)v = c(w · s)s−w. This requires for each v two dot products and
scalar multiplications and essentially no overhead, while by contrast, if R is the
matrix of T(uI ,uF), then computing Rv not only involves three dot products for
each v, but also has the extra overhead of first requiring that we construct R from
uI and uF . The advantage is most pronounced when rotating a single object or
scene, since then (see the appendix for details) we only need to perform the inverse
rotation on the few vectors that define our perspective viewing frame, rather than
having to rotate the many points defining the polygons of the object itself, so the
overhead of computing R becomes significant. (Note that the inverse rotation is
obtained just by reversing the roles of uI and uF above.)

To understand this algorithm better, we recall the the more familiar represen-
tation of a rotation as the composition of reflection in two planes. The two steps
above are reflections in lines, a less familiar concept. In general, reflection in a
subspace is the linear operator that acts as the identity on that subspace and mi-
nus the identity on its orthogonal complement. By Pythagoras, any reflection is
distance preserving, and orientation reversing or preserving depending on whether
the orthogonal complement is odd or even dimensional. But in either case, the
composition of two reflections is distance and orientation preserving, i.e., a rota-
tion. Note that any reflection ρ is its own inverse, and is therefore symmetric, since
it is also orthogonal, i.e., ρT ρ = I.

If U is the subspace spanned by a unit vector u ∈ R3, the operator ρU performing
reflection in U is given explicitly by the formula ρU = ρu = 2Pu−I, where Pu is the
orthogonal projection on U (or u), Puv = (v ·u)u and so ρuv = 2(v ·u)u−v. We
check that if v = u, ρuv = 2(u ·u)u−u = u, so v is fixed, and if v is orthogonal to
u, ρuv = 2(v ·u)u−v = −v, so v is reversed, which verifies the defining properties
of the reflection in U .

The algorithm presented above is equivalent to T(uI ,uF) = ρbρuI
where b = s

||s||
is the unit bisector of uI and uF , since the factor c implicitly normalizes s = uI+uF ,
without taking a square root. To see this we use the fact that d = uI − uF is
orthogonal to s, and that uI = 1

2 (s + d), uF = 1
2 (s − d), and the properties

of reflections, which confirms that ρbρuI
uI = ρbuI = uF (see Figure 1). Also,

since ρuI
reverses the orthogonal complement of uI , and ρb reverses the orthogonal

complement of b, their composition acts as the identity on the intersection of their
complements, which is the same as the orthogonal complement of the span of uI
and b, or uF .

NEW ALGORITHMS FOR IMPLEMENTING AND INTERPOLATING ROTATIONS 3

We call an ordered pair of unit vectors (u0,u1) whose reflection operators implement
a transvection a reflecting pair for that transvection. We make the preliminary
observation that (uI ,b) and (b,uF) are both reflecting pairs for T(uI ,uF), since by
arguments parallel to those above, ρuF

ρbuI = ρuF
uF = uF , and ρuF

ρb acts as the
identity on the orthogonal complement of the span of uI and uF .

Perhaps more geometrically, we can interpret this algorithm in terms of its re-
striction to a sphere, and a globe of the Earth in particular. In this setting, reflection
in an axis through some city N , (‘reflection in N ’) corresponds to swapping all pairs
of cities that are equidistant from N on any great circle through N . Then if we
imagine N = New York to be the midpoint of B = Boston and W = Washington,
DC, we accomplish the rotation of the globe taking B to W and preserving the
great circle joining them by reflecting in B, then reflecting in N . The argument is
that the first reflection fixes B, the second swaps B and W since they are equidis-
tant from N , and both reflections preserve all distances and reverse all great circles
through B and W , respectively. Therefore, their composition preserves the great
circle containing both, and its orientation, i.e., this is the transvection taking B to
W . Again, we could also reflect first in N then in W with the same result, or in any
pair of cities on the same great circle whose oriented distance apart is the same. In
the next section we will consider the question of the complete set of reflecting pairs
corresponding to a particular transvection, and its consequences.

This algorithm could certainly also be specified in terms of commonly used
Householder reflections in planes, I − 2uuT = −ρu, since the two minus signs
cancel, but perhaps the fact that the normal to the fixed plane, u, is reversed in-
stead of fixed is why this approach has been ignored thus far. It may also be that
ever since Euler’s Theorem on the axis of a three-dimensional rotation ([13, 29–30]),
the axis-angle description of a rotation has supplanted all others. Here we observe
that not only is it possible to omit the axis entirely from the computation, but also
that it seems as physically natural to specify a rotation of a ball by pulling it along
an equator as it is to twirl it about some axis.

Another advantage, beyond simplicity, is that nothing in the above depended
upon the dimension of R3, and the same construction is valid in any Rn. Indeed,
the concept of transvection and the inspiration for the algorithm comes from Élie
Cartan’s beautiful theory of symmetric spaces ([4, 21]), and much of the above
generalizes to that much broader context.

In the next section we will describe other consequences of this approach, includ-
ing an algorithm for interpolating rotations, and a simple geometric realization of
quaternions and derivation of their composition law.

2. Using Equivalent Reflecting Pairs for
Composing and Interpolating Rotations

As we have noted above, ρbρuI
and ρuF

ρb are equivalent to the unique rotation
T(uI ,uF) that takes uI to uF and acts as the identity on the orthogonal complement
of the span of uI and uF . It is natural to expect if there are two such reflecting
pairs, then there are more, and to ask what are all reflecting pairs correspond to
the same rotation. Geometrically, it is intuitively clear that if u′0 and u′1 are any
two unit vectors spanning the same two-dimensional subspace as u0 and u1, and
the oriented angle between u′0 and u′1, and between u0 and u1 are the same, then
ρu1ρu0 = ρu′

1
ρu′

0
(see Figure 2).

4 BOB PALAIS AND RICHARD PALAIS

To prove this rigorously, we can use the conjugate relation between a rotation R
and a reflection ρ: ρRuv = RρuR−1v. Algebraically, if we define the map Q from
reflecting pairs to R1 × R3 by

Q : (u0,u1)→ Q(u0,u1) = [q,q] = [u0 · u1,u0 × u1],

this condition is equivalent to Q(u0,u1) = Q(u′0,u
′
1). We call q the scalar part of

Q and q the vector part. It is an elementary vector identity that for any vectors
u0,u1 in R3, (u0 · u1)2 + ||u0 × u1||2 = ||u0||2||u1||2, so we see that if we identify
R1×R3 with R4, Q maps reflecting pairs of unit vectors to the unit sphere, S3 ⊆ R4.

We have also noted that reflecting in u is the same as reflecting in −u. There-
fore, if we reverse either u0 or u1, we do not affect the resulting rotation, although
both the scalar and vector parts of the resulting Q are reversed. If we reverse both
u0 and u1, we have just performed a half-turn rotation in the u0–u1 plane, and
geometry and algebra both tell us that the scalar and vector parts of the resulting
Q are unchanged. Symbolically, we can write this as Q(−u0,u1) = Q(u0,−u1) =
−Q(u0,u1) = −Q(−u0,−u1), where negation is meant component-wise in R1 ×
R3 ≡ R4, and for the rotations, T(−u0,u1) = T(u0,−u1) = T(u0,u1) = T(−u0,−u1).
It is not hard to show that no other reflecting pairs correspond to the same ro-
tation, in other words, T(u0,u1) = T(u′

0,u
′
1)

if and only if Q(u0,u1) = Q(u′0,u
′
1)

or Q(u0,u1) = −Q(u′0,u
′
1). (This includes the special cases when u0 = ±u1, for

which T(u0,u1) = I, the identity rotation, and Q(u0,u1) = ±[1, 〈0, 0, 0〉].)
This brings us to the second main topic of the paper. The equivalence classes

of reflecting pairs under the equivalence relation (u0,u1) = (u′0,u
′
1) if and only if

Q(u0,u1) = Q(u′0,u
′
1) is isomorphic to (and gives a useful geometric realization of)

the unit quaternion group, SU(2). (See [29] for an excellent modern introduction
to the relationship between the Lie groups SO(3) and SU(2), Cayley-Klein param-
eters, Pauli matrices and spinors.) The equivalence classes of reflecting pairs under
the equivalence relation (u0,u1) = (u′0,u

′
1) if and only if Q(u0,u1) = ±Q(u′0,u

′
1)

is isomorphic to (and gives a useful geometric realization of) the three-dimensional
rotation group, SO(3)

The key to this fact is the following: just as we can define a composition law
for equivalence classes of ordered pairs of points in Euclidean space (i.e., the par-
allelogram law) to realize geometrically composition of translations of Rn, and and
just as we can define a composition for equivalence classes of ordered pairs of unit
vectors in the plane (i.e., angle addition) to realize geometrically the composition
law for the plane rotation group, SO(2) = U(1), ([3]) in a completely analogous
way we can compose equivalence classes of ordered pairs of reflections to help us

NEW ALGORITHMS FOR IMPLEMENTING AND INTERPOLATING ROTATIONS 5

understand the composition of unit quaternions and rotations in SO(3). If we are
given any two ordered pairs of unit vectors, then since any two planes through the
origin in R3 have non-empty intersection, we can always find two equivalent pairs
with the first unit vector of the second pair, u, equal to the second unit vector of
the first pair. In Figure 3, the original second pair (u′,u′1) is equivalent to (u,u1),
and the original first pair, (u′0,u

′′), not shown, is equivalent to (u0,u). Since the
composition of the original rotations, ρu′

1
ρu′ρu′′ρu′

0
is equivalent to ρu1ρuρuρu0

and because the composition of any reflection with itself is the identity, ρ2
u = I, the

composition of the original rotations is equivalent to ρu1ρu0 , i.e., the correspond-
ing rotation is just the composition of reflection in the first vector of the first pair
followed by reflection in the second vector of the second pair. So we may truly
think of this as ‘vector addition’ or ‘angle addition’ for three-dimensional rotations,
as long as we are careful to remember that the ordered pairs of vectors give the
invariant subspace and half-angle of the rotation, rather than being in an ‘initial-
final’ relation as in the other settings. Given the invariant plane and half-angle
of two rotations, this gives a coordinate-free description of the invariant plane and
half-angle of their composition that we can perform with our fingers just as we do
with displacements or plane rotations. The construction is in some sense dual to
the Euler–Schwarz spherical triangle construction ([1, 9, 34, 36]).

From an algebraic perspective, this construction shows that equivalence classes
of reflecting pairs are closed under composition, that the class (u,u) for any unit
vector u is its identity, and the class of (u0,u1) is the inverse of the class of (u1,u0),
in other words, they form a group.

6 BOB PALAIS AND RICHARD PALAIS

It is natural and appealing to take the geometric composition laws we have
described as the starting point to defining the translation group and plane rota-
tion groups, and derive from them the corresponding algebraic rule for composing
equivalence class invariants ([3]). For translations, we find from congruent triangles
that we add the invariants, the displacements in each coordinate, component-wise.
The invariants for plane rotations described as equivalence classes of pairs of unit
vectors in the plane are formally similar to those we use for unit quaternions:
(u0,u1) = (u′0,u

′
1) if and only if Q(u0,u1) = Q(u′0,u

′
1), as long as we interpret

these vectors as unit vectors in R2 by identifying the vector part with its non-
vanishing component. Then Q reduces to a map taking (u0,u1) to 〈cos θ, sin θ〉,
where θ is the oriented angle between u0 and u1. Using congruent and similar trian-
gles, we can derive the composition law for the invariants of plane rotation from the
geometry, just as Wessel ([47, 48]) did in 1797. If the invariants of the plane rotation
taking u0 to u are 〈u0 ·u,u0×u〉 = 〈cos θ1, sin θ1〉 and the invariants of the rotation
taking u to u1 are 〈u ·u1,u×u1〉 = 〈cos θ2, sin θ2〉, then the invariants of the plane
rotation taking u0 to u1 are 〈cos θ1 cos θ2 − sin θ1 sin θ2, cos θ1 sin θ2 + cos θ2 sin θ1〉,
i.e.,

u0 · u1 = (u0 · u)(u · u1)− (u0 × u)(u× u1),

u0 × u1 = (u0 · u)(u× u1) + (u · u1)(u0 × u).

We now ask if we can perform the corresponding analysis for reflecting pairs
in three-dimensions? The answer is yes, and the resulting composition law con-
tains the plane rotation version as a special case, since the non-commutative three-
dimensional rotation group contains many commutative plane rotation subgroups.
If we denote by u the common intermediate unit vector in our above construction
for composing reflecting pairs, and call the first vector of the first pair u0, and the
second vector of the second pair u1, what we are looking for is an expression for the
invariants of the composed pair, Q(u0,u1) in terms of the invariants of the pairs
being composed, Q(u0,u) and Q(u,u1) (Figure 3). Using Lagrange’s formula and
familiar vector identities, it is not difficult to derive two new vector identities: For
any three unit vectors u0,u,u1 ∈ R3,

u0 · u1 = (u0 · u)(u · u1)− (u0 × u) · (u× u1),

u0 × u1 = (u0 · u)(u× u1) + (u · u1)(u0 × u) + (u× u1)× (u0 × u).

Once derived or if motivated by other considerations, these formulas may also be
easily confirmed using an adapted basis in which u = 〈1, 0, 0〉,u0 = 〈cos θ,− sin θ, 0〉
with cos θ = u0 · u, and calculating the remaining components, by differentiating
to show the right hand sides are constant as u = u(t) is rotated from u(0) = u0

where the formulas hold identically, or checking them on standard basis vectors and
appealing to multilinearity. In terms of the map, Q, if we denote the scalar and
vector parts of Q(u0,u) = [q0,q0], and of Q(u,u1) = [q1,q1], the formula becomes

Q(u0,u1) = [q0q1 − q0 · q1, q0q1 + q1q0 + q1 × q0].

This is quaternion multiplication ([15,16]), also known as the Rodrigues com-
position formula ([1, 2, 35, 45]), motivated and derived here from the geometry of
rotation using reflecting pairs. If u0,u, and u1 are co-planar, so q1 × q0 = 0, this
reduces to the complex multiplication formula above, as claimed.

NEW ALGORITHMS FOR IMPLEMENTING AND INTERPOLATING ROTATIONS 7

If we keep the plus and minus classes distinct, equivalence classes of reflecting pairs
is isomorphic to the unit quaternions, SU(2), and if we identify them, the classes
we obtain are isomorphic to the the three-dimensional rotation group, SO(3).

As an example, if we take u0 = 〈1, 0, 0〉, u = 〈0, 0,−1〉, and u1 = 〈0, 1, 0〉,
Q(u0,u) = [q0,q0] = [0, 〈0, 1, 0〉], Q(u,u1) = [q1,q1] = [0, 〈1, 0, 0〉], and either
directly or using the composition rule, Q(u0,u1) = [0, 〈0, 0, 1〉], which in Hamil-
ton’s notation would be written ‘ij = k’. Note that when we interpret ij, the
half-turn rotation about the y-axis corresponding to j, reflection in u0 then in u,
is performed first, in the order of function composition. This is followed by the
half-turn rotation about the x-axis corresponding to i, reflection in u then in u1, to
obtain the half-turn rotation about the z-axis corresponding to k, reflection in u0

then in u1. (See <http://www.math.utah.edu/∼palais/transvection.html>
for interactive visualizations.) Note the different geometric interpretations of the
quaternion i as a half-turn rotation about the x−axis and the complex number i,
which we think of geometrically as a quarter-turn rotation in the x–y plane! Con-
sequently, since i2 = −1 in both cases, the complex number −1 corresponds to a
half-turn rotation in the x–y plane, while the unit quaternion −1 = [−1, 〈0, 0, 0〉]
corresponds to reflection in two opposite unit vectors, i.e, the identity.

This realization makes it easy to ‘see’ unit quaternions and hence S3 no less
concretely than conventional vectors in R3. In other words, just as we think of the
vector v = 〈v1, v2, v3〉 ∈ R3 as any pair of points ((t1, t2, t3), (h1, h2, h3)) satisfying
hj − tj = vj , j = 1, 2, 3, and the rotation in the plane by an angle θ, z = eiθ =
(cos θ, sin θ) as any pair of unit vectors in R2, (u = 〈u1, u2〉,v = 〈v1, v2〉) satisfying
(u · v,u × v) = (u1v1 + u2v2, u1v2 − u2v1) = (cos θ, sin θ), we may think of the
unit quaternion Q = [q,q] as any pair of unit vectors in R3, (u0,u1) satisfying
[u · v,u× v] = [q,q].

In addition to composition, many other standard quaternion constructions can be
understood in this framework. Negation, as we have seen, corresponds to reversing
either unit vector of an ordered pair, and gives the well-known double-covering
of the three-dimensional rotation group by the unit quaternions a simple visual
interpretation. Since we can invert two reflections by performing them in the reverse
order, we obtain the inverse of a geometric quaternion by reversing the order of its
pair. Since the scalar product is symmetric with respect to reversing order, but the
vector product is anti-symmetric, this correctly corresponds to conjugation of the
associated unit quaternion in its standard representation in S3 ⊂ R4. In Figure
3, (u,u) is one representative of the identiy, +1, (u,−u) is a representative of
−1. Since Q1 = Q(u,u1) = [q1,q1], we have −Q1 = Q(−u,u1) = [−q1,−q1] =
−[q1,q1], is the opposite quaternion representing the same rotation, and Q∗1 =
Q(u1,u) = [q1,−q1] is the inverse or conjugate quaternion, which along with −Q∗1
corresponds to the inverse rotation.

We emphasize that in order for this picture to correspond to the correct rotation,
and to take advantage of its efficiency, we must interpret any such (u0,u1) as a
reflecting pair, so if this rotation R = ρu1ρu0 has axis n and angle θ, we see
that [u · v,u × v] = [q,q] = [cos θ2 , sin

θ
2n]. In the case of vectors in Rn or plane

rotations, there are distinguished representatives based at the identity, (0, 0, 0), or
(1, 0), respectively, while in the case of spatial rotations there is not.

8 BOB PALAIS AND RICHARD PALAIS

By Euler’s theorem on the axis of a rotation ([13, 29, 30]) every rotation is a
transvection defined by some pair of unit vectors, so by identifying the two classes
Q and −Q this construction can be modified to give a realization of the three-
dimensional rotation group SO(3) as equivalence classes of ordered pairs of lines
through the origin in R3. Our construction can also be extended to the full quater-
nion algebra by eliminating the restriction that u0 and u1 are unit vectors. Since
both scalar and vector product are bilinear, the operations of addition or scalar mul-
tiplication are realized by finding representatives of two pairs sharing a common
first (or second) vectors, and adding (or scalar multiplying) the other vectors.

This same ‘shared first vector’ construction also arises in an efficient new al-
gorithm for interpolating rotations. The standard method of interpolating rota-
tions R0 and R1 is to interpolate corresponding quaternions Q0 and Q1 along the
shorter arc of the great circle joining them on S3. For this reason the process is
called ‘SLERP’ ([43, 44]), for spherical linear interpolation. (We choose Q1 to be
the closer to Q0 of the two opposite quaternions corresponding to R1.) If we set
θ = arccos(Q0 · Q1) the desired path Q(λ), 0 ≤ λ ≤ 1 joining Q0 = Q(0) and
Q1 = Q(1) is given by Q(λ) = a0(λ)Q0 + a1(λ)Q1, where

a0(λ) =
sin((1− λ)θ)

sin θ
,

and

a1(λ) =
sin(λθ)

sin θ
.

Note that we can replace sin(arccos(Q0 ·Q1) by
√

1− (Q0 ·Q1)2.
Just as in the composition and linear combination constructions, we can always

find unit vectors u,u0, and u1 such that Q(u,u0) = Q0 and Q(u,u1) = Q1. Then
if we perform spherical interpolation from u0 to u1 on S2 ∈ R3 by the analogous
formula u(λ) = a0(λ)u0 + a1(λ)u1, bilinearity guarantees that the resulting pairs
correspond to the standard interpolating path: Q(u,u(λ)) = Q(λ). Using La-
grange’s identity, we can also show that θ = arccos(u0 · u1), i.e. u0 · u1 = Q0 ·Q1,
and again, we can replace sin(arccos(u0 ·u1) by

√
1− (u0 · u1)2. In Figure 3, u(λ)

would be the arc of the great circle joining u0 to u1 (not shown).
The advantage of this method is not simply that we have reduced from four to

three the number of components used when we interpolate and form dot products.
That is true, but not particularly significant. The greater saving is that to rotate
a vector v by each interpolated quaternion Q(λ) in its standard representation in
R4, we must convert Q(λ) to a matrix R = R(Q(λ))using the Euler–Rodrigues
quaternion-to-matrix formula, then multiply Rv, or conjugate quaternion multiply
Q(λ)[0,v]Q∗(λ) = [0,Rv], which requires even more computation. In contrast, the
reflecting pair representation of the interpolating path is ready to act as rotation by
composition of two reflections with no overhead. We do not even need to compute
(and implicitly normalize) a bisector as we did in the trackball application. For any
v ∈ R3, we simply form w = 2(v · u)u− v, and obtain Rv = 2(w · u(λ))u(λ)−w.
As in the first section, the advantage over converting to a matrix is greatest when
there are few vectors to rotate, i.e., when we only need to rotate the viewing frame
for a scene.

NEW ALGORITHMS FOR IMPLEMENTING AND INTERPOLATING ROTATIONS 9

Finally, the reflecting pair realization of SU(2) makes it easy to see and under-
stand the fact that the path in the space of three-dimensional rotations from the
identity to itself consisting of two full rotations about an axis can be continuously
deformed to the constant path at the identity. This fact is the essence of several
well-known topological demonstrations that go by various names such as Dirac’s
Belt (or String) Trick, Feynman’s Philippine Wineglass (or Plate) trick, ([12, 19,
20, 33]) and the Orientation Entanglement property described in the treatment of
spinors in a classic general relativity book [31]. It is also the basis of the fact that
while the homotopy group of loops of plane rotations is isomorphic (via winding
number) to Z, on the other hand, since the loop consisting of two full rotations
about an axis is homotopic in SO(3) to a constant loop, the group of homotopy
classes of loops of spatial rotations is isomorphic to Z/(2).

A path consisting of two full turns about an axis u can be described by a set
of reflecting pairs in which the first unit vector u0 is fixed on the equator of the
axis u on the unit sphere in R3, and the second u1(t) follows a path circling the
same equator once from u0 back to itself. To see this better, note that when the
vectors u1(t) = u0, Q(u0,u1(t)) = [1, 〈0, 0, 0〉], and ρu1(t)ρu0 = I. When they are a
quarter turn apart, Q(u0,u1(t)) = [0,u], is a pure vector quaternion, corresponding
to a half-turn rotation and represented by a symmetric matrix. When we have
gone halfway around the equator, u1(t) = −u0, Q(u0,u1(t)) = [−1, 〈0, 0, 0〉] and
again ρu1(t)ρu0 = I, so we have already completed one full rotation about u. As
u1(t) completes its revolution around the equator back to u0, all we have to do
to deform this path ρu1(t)ρu0 to the constant path at the identity is to deform the
path u1(t) on S2 to the constant path u0. In other words, the reflecting pairs
picture reduces the simple-connectedness of S3 to the simple-connectedness of S2.
Similarly, the fact that one full turn about u is not homotopic to the identity
can be understood by letting u0 be as above, but u1(t) only complete a half-turn
about the equator from u0 to −u0. The corresponding path in the rotation group
completes one full turn about u from the identity back to itself. That this cannot
be deformed to the constant path at the identity is apparent from the fact that
the endpoint of u1(t) cannot be deformed away from −u0 continuously without the
corresponding terminal rotation leaving the identity. In other words, the reflecting
pairs picture reduces the fact that SO(3) is not simply-connected to the fact that
S0 = {+1,−1} is not connected. This formulation also enables us to see that the
demonstration of the orientation entanglement property is simply the union of two
belt trick homotopies, one reflected in the other. (It is interesting to note that if
belt tricks are concatenated periodically instead of reflected, the trick can no longer
be performed!)

Geometric descriptions of composition of rotations in terms of their axes and
angles, foreshadowing the reflecting pair equivalence class construction, may be
found in papers as early as that of Euler ([14]) and Schwarz ([37]) and as recent
as Hestenes ([22, 23]), Conway-Smith ([9]), and Penrose ([35]). See Stillwell’s ex-
cellent article ([46]) as well as Altmann ([1, 2]) for discussions of some historical
aspects. Original formulations of the algebraic composition formula (i.e., quater-
nion multiplication) from different points of view appear in the works of Rodrigues
([36]), Hamilton ([17]), and Cayley ([5]). There are many other nice treatments of
quaternions from various points of view, including algebra analysis, geometry and
visualization, and many applications in visualization, and many areas of physics
and engineering ([10, 12, 18, 19, 20, 25, 26, 28, 29, 42, 43, 46]).

10 BOB PALAIS AND RICHARD PALAIS

3. Appendix: Perspective Rendering and
Implementation of a Virtual Trackball

Objects and scenes are rendered using elementary transformations that map a
data point dp ∈ R3 to a pixel on the screen. These mappings depend on the
viewing data, i.e., the viewpoint, vp ∈ R3, from which the point is viewed, and
the viewframe, an orthonormal basis including the normalized viewing direction,
vd = − vp

||vp|| specifying the orientation of the viewer at the viewpoint. In our model
of a scene or single object, instead of moving the data points, it is equivalent to
performing the inverse motion on the viewing frame.

To render a data point, we first map it to its image ip along the line from the
viewpoint to dp that lies in the image plane orthogonal to the view direction (and
passing through the origin.) Thus ip = vp+t(dp−vp), for the value of t satisfying
ip · vp = 0, which leads to t = − ||vp||2

(dp−vp)·vp (see Figure 4).

Note that the numerator is constant as long as the distance from the viewpoint
to the origin is fixed and need not be recomputed. Because this map from R3 to the
image plane does not depend on any particular basis for the image plane, we may
use it to initialize the remaining vectors in the viewframe, ir, iu. These vectors form
an orthonormal basis for the image plane, corresponding to the horizontal right,
and vertical up directions, in the image plane and on the screen. For example, we
may let the initial iu be the projection of 〈0, 0, 1〉 into the image plane as determined
above, and ir = vd× iu.

Our next transformation simply computes the components of ip in this basis,
cj = ip · ij , j = 1, 2. Finally, we assign a pixel to the vector 〈c1, c2〉 ∈ R2 according
to an affine transformation taking the origin 〈0, 0〉 to the pixel 〈pc1, pc2〉 at the
center of the viewing window,and scaled according to the correspondence above:
〈px1, px2〉 = 〈pc1 + s c1, pc2 − s c2〉. Here, s is a scaling factor and the signs
are different because pixels are indexed right and downward instead of the right
and up convention in Cartesian coordinates. The rendering map dp → 〈px1, px2〉
obtained by composing the three transformations described above provides the
basic information required by the standard graphics routines used to draw paths
and polygons.

NEW ALGORITHMS FOR IMPLEMENTING AND INTERPOLATING ROTATIONS 11

When we implement a ‘virtual trackball’ with our mouse, we imagine it is located
at the head of a unit vector um ∈ R3 on the front surface of a transparent unit
sphere centered at the origin, in which our object or scene is embedded. As we
move the mouse, it incrementally drags this sphere, and our scene about its center
at the origin. The pixel at which the mouse is located on screen corresponds to
the vector in the image plane im that is collinear with the viewpoint vp and the
unit mouse vector um. The rendering map is not invertible, however we invert the
latter two transformations taking a vector in the image plane to pixel coordinates
to identify im: im = c1ir + c2iu, where 〈c1, c2〉 = 1

s 〈px1 − pc1, pc2 − px2〉. Now we
can find um by identifying the point on the line joining vp and um whose norm
is 1, (see Figure 5).

Thus um = vp + t(im − vp), for the value of t satisfying um · um = 1, or
q(t) = at2 + bt + c = 0, where a = ||im − vp||2, b = 2(vp · (im − vp)), and
c = ||vp||2 − 1. Note again that c does not change as long as the distance from vp
to the origin is invariant, i.e., that it is only rotated about the origin.

We must consider the possibility of no solution or multiple solutions of the qua-
dratic equation above. Geometrically we see that the cone with vertex at the
viewpoint and tangent to the unit sphere, is tangent along a latitude circle about
the vd axis. If um is on this grazing horizon, the line joining the viewpoint and um
intersects the unit sphere exactly once, between the image plane and the viewpoint.
This line also intersects the image plane on a circle of radius rg, which may be found
using similar triangles and Pythagoras, or by setting the discriminant of q equal to
zero. Both approaches give rg2 = ||vp||2

||vp||2−1 > 1. If ||im||2 > rg2, the line joining
the viewpoint and im does not intersect the unit sphere, and we set um = im

||im|| ,
the unit vector in the direction of im in the image plane, which we cannot truly
‘see’ as it is ‘behind’ the visible horizon of the sphere. If ||im||2 < rg2, q(t) = 0 has
two solutions, corresponding to the two intersections of the line containing vp and
such an im with the unit sphere using the form that avoids the potential instabil-
ity of the conventional solution formula. As the mouse crosses the grazing circle
back and forth, there is a discontinuity in the mapping to the unit sphere that can
cause the virtual trackball to jump unnaturally. Since we initialize and terminate
each drag of the ball with a mouse-down and mouse-up event, respectively, this
unwanted behavior can be easily prevented by imitating a fictitious mouse-up and
mouse-down event each time we cross the horizon.

12 BOB PALAIS AND RICHARD PALAIS

Once a mouse-down event initializes our first unit vector uI = um0, then until
the next mouse-up event, in each cycle we acquire the new mouse pixels and obtain
the second unit vector uF = um1 specifying the rotation we wish to perform. After
performing the inverse rotation on the viewing frame using the simple transvection
algorithm described in the paper, we update our viewpoint using the new view
direction and the known view distance from the viewpoint to the origin. The final
step we must perform is to transform our previous second mouse unit vector uF
to become the next initial unit vector. We cannot just let the new uI be the old
uF since, due to the rotation of the viewing frame, that unit vector no longer
corresponds to the point on the screen from which it was obtained, and if we did
so and left the mouse still, the object would rotate uncontrollably. Fortuitously, we
can check that the unit vector that now corresponds to this pixel is just the old uI !
In other words, we only have to compute uI once per drag, and during each frame
of our interactive animation, we only need to compute one square root to obtain
the new uF . If we do this, and leave the mouse down but static, our object does
not move. (We could also rotate or not depending upon a mouse-moved event.)
When a mouse-up event occurs, we have the option of stopping the motion, or if we
leave uF fixed, the latest rotation will be repeated indefinitely, simulating inertial
motion of our object.

A working example, sufficient for many purposes, of the implementation de-
scribed above, may be found along with codes and figures, at:
<http://www.math.utah.edu/∼palais/transvection.html>. In it, we define a
function that reflects a vector v in the vector u and puts the result in w:

function reflect(v,u,w,normfac) {
c = normfac*dot3(v,u);
for (i=0; i < 3; i++) w[i] = c*u[i]-v[i];
}
(where dot3 implements the dot product in R3) and use it to define a function that
does two reflections to perform a rotation:

function rotate(v,b,normfac,u I){
reflect(v,b,w,normfac);
reflect(w,u I,v,2);
}
Then, literally, every time we move the mouse and acquire a new unit vector uF ,
the only lines of code we need to execute in order to perform the specified rotation
on the viewframe and viewpoint are:

function transvectviewframe(){
for (i=0; i < 3; i++) s[i] = u I[i]+u F[i];
normfac = 2.0/dot3(s,s);
rotate(vd,s,normfac,u I);
rotate(iu,s,normfac,u I);
cross(vd, iu, ir);
for (i=0; i < 3; i++) vp[i] = -viewdistance*vd[i];
}
where cross implements the cross product in R3. If there is a simpler, more efficient
code to perform this rotation, given uI and uF , the authors would be interested in
learning of it. An analysis of operation counts using various methods can be found
at: <http://en.wikipedia.org/wiki/Quaternions and spatial rotation>.

NEW ALGORITHMS FOR IMPLEMENTING AND INTERPOLATING ROTATIONS 13

Two University of Utah students have carried out implementations of our transvec-
tion trackball algorithm; one, Chuanbin Peng, in C++/OpenGL/FLTK and com-
piled under Microsoft Visual Studio (UNIX/Linux environments), the other, Eric
Brown, for the Nintendo DS video games platform at Sensory Sweep Studios. The
authors have implemented it in Pascal, Java, and NI LabVIEW.

We have also implemented numerous utility algorithms documented at the link
above. Most notably, conversion from a unit quaternion Q = [q,q] to a reflecting
pair (u0,u1) may be thought of in purely linear algebraic terms as the problem
of finding unit vectors having prescribed scalar q and vector products. A useful
result is that if u is any unit vector orthogonal to q, then (u, qu + q × u) and
(qu − q × u,u) are reflecting pairs equivalent to Q. We can check by performing
the reflecting pair to quaternion map, i.e., taking their scalar and vector products
and applying vector identities. To convert a rotation matrix ρ to a reflecting pair,
we note that its axis v is defined by (ρ − I)v = 0, so we may take u0 to be any
non-zero column of ρT − I. Then since u1 should be the bisector of u0 and its
image under ρ, u1 is the corresponding column of the anti-symmetric part, A, of ρ:
1
2 ((ρT − I) + ρ(ρT − I)) = 1

2 (ρT − ρ) = R. Taking non-generic cases when R = 0
into account also leads to a new proof of Euler’s theorem (32,33]).

Shoemake’s Arcball ([40, 41]) implements a rather different model for mouse-
controlled rotation than other virtual trackballs. Rather than performing incremen-
tal, path-dependent rotations, the rotation performed depends only on the point
at which the mouse was clicked (down) and the current location of the mouse,
and is therefore path-independent. Also, the current unit vector does not specify
the direction to which the initial unit vector has been dragged, but the bisector
of those directions. Because of this, the object is rotated twice the angle between
these vectors on the virtual trackball, and a full-turn of an object can be achieved
without lifting (un-clicking) the mouse. The codes for Arcball may be found on
the Web. We have also implemented a version using transvection simply by re-
placing reflection in the bisector with reflection in the current mouse unit vector,
and instead of reflecting in the previous mouse unit vector, converted to the new
coordinate system, we reflect in the initial mouse unit vector, converted at each
step. While the former changes on the screen but remains constant relative to the
changing coordinate system, the latter is fixed on the screen, but changes relative
to the changing coordinate system. It is also linked from:

<http://www.math.utah.edu/∼palais/transvection.html>
(The original Arcball also draws a great circle arc from the initial mouse point to
the point where it has been rotated, and we have implemented this approximately.)

For treatments of more sophisticated aspects of graphics, including clipping,
sorting and drawing order, lighting and shading, etc., see e.g., ([15,40]).

14 BOB PALAIS AND RICHARD PALAIS

REFERENCES

[1] S. Altmann, Rotations, Quaternions, and Double Groups., Dover, New York,
1986.

[2] S. L. Altmann, Hamilton, Rodrigues and the quaternion scandal Mathematics
Magazine 62: 291-308..

[3] M. Audin, Geometry., Springer, New York, 2002
[4] É. Cartan, Lecons sur la geometrie des éspaces de Riemann, Gauthier-Villars,

Paris, 1928 p. 266.
[5] A. Cayley, Collected Mathematical Papers, Cambridge Univ. Press, 1889.
[6] M. Chen, J. Mountford, and A. Sellen, A Study in Interactive 3-D Rotation Using

2-D Control Devices. Computer Graphics (ACM Siggraph ’88 Proceedings), 22
(4), 1988, 121–129.

[7] M. Chen and K. C. Smith, A Technique for Specifying Rotations in Three Di-
mensions Using a 2-D Input Device. Proceedings IEEE Montech ’87 – Compint
’87, 1987,118–120).

[8] M. Chen, 3-D rotation using a 2-D input device. Develop (The Apple Technical
Journal) 14, 40-53 (1993).

[9] J. H. Conway and D. H. Smith, On Quaternions and Octonions: Their Geometry,
Arithmetic, and Symmetry , A. K. Peters, Wellesley, 2003

[10] H. S. M. Coxeter, Regular Polytopes, 3rd ed. New York: Dover, pp. 112–113
and 296, 1973.

[11] J.J. Craig, Introduction to Robotics: Mechanics and Control, 2nd ed., Addison-
Wesley, Reading, 1986.

[12] Y. Dang, L. H. Kauffman, and D. J. Sandin, Hypercomplex Iterations: Dis-
tance Estimation and Higher Dimensional Fractals, World Scientific, New Jersey,
2002.

[13] L. Euler, Formulae Generales Pro Translatione Quacunque Corporum Rigido-
rum. Presented to the St. Petersburg Academy on October 9, 1775. Novi Com-
mentarii Academiae Scientiarum Petropolitanae 20, 1776, pp. 189–207 [E478].
Reprinted in Opera Omnia: Series 2, Volume 9, pp. 84–98, and in Theoria motus
corporum solidorum seu rigidorum, ed. nova, 1790, pp. 449–460 [E478a].

[14] L. Euler, Nova methodus motum corporum rigidorum determinandi. Presented to
the St. Petersburg Academy on October 16, 1775. Novi Commentarii academiae
scientiarum Petropolitanae 20, 1776, pp. 208-238. [E479]. Reprinted in Opera
Omnia: Series 2, Volume 9, pp. 99–125, and in Theoria motus corporum solido-
rum seu rigidorum, ed. nova, 1790, pp. 460–481 [E479a].

[15] J. D. Foley, A. van Dam, S. K. Feiner, and J. F. Hughes, Computer Graphics:
Principles and Practice in C (2nd Edition), Addison-Wesley, Reading, 1995

[16] W. R. Hamilton, On Quaternions. Proceedings of the Royal Irish Academy, Nov.
11, 1844, vol. 9, vol. 9 (1847), 1-16.

[17] W. R. Hamilton, The Mathematical Papers of Sir William Rowan Hamilton, Vol.
III , Cambridge Univ. Press, 1967.

[18] A. J. Hanson, Visualizing Quaternions., Morgan Kaufmann/Elsevier, City, 2006.

[19] J. C. Hart, G. K. Francis, and L. H. Kauffman, Visualizing quaternion rotation,
ACM Transactions on Graphics Volume 13 , Issue 3 July 1994 (cf. also Air On
Dirac Strings: dirac.mpg at:
<http://www.evl.uic.edu/hypercomplex/html/dirac.html>)

NEW ALGORITHMS FOR IMPLEMENTING AND INTERPOLATING ROTATIONS 15

[20] J. C. Hart, Quaternion Demonstrator ,
<http://graphics.stanford.edu/courses/cs348c-95-fall/software/quatdemo/>

[21] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Aca-
demic Press, New York, 1978.

[22] K. Henriksen, S. Sporring, and K. Hornbaek, Virtual Trackballs Revisited. IEEE
Transactions on Visualization & Computer Graphics, March/April 2004 (Vol.
10, No. 2) pp. 206-216.

[23] D. Hestenes, New Foundations for Classical Mechanics, Kluwer, Dordrecht, 1999
[24] D. Hestenes and G. Sobczyk, Clifford Algebra to Geometric Calculus, Kluwer,

Dordrecht, 1984.
[25] B.K.P. Horn, Solution of Absolute Orientation using Unit Quaternions, Journal

of the Optical Society A, Vol. 4, No. 4, pp. 629–642, April 1987.
[26] B.K.P. Horn, Notes on Unit Quaternions and Rotations,

people.csail.mit.edu/bkph/articles/Quaternions.pdf.
[27] C. Hu, M. Q. H. Meng, M. Mandal, and P. X. Liu, Robot Rotation Decomposition

Using Quaternions, Proc. 2006 IEEE International Conference on Mechatronics
and Automation (ICMA 2006), 2006, p.1158–1163.

[28] J. Hultquist, A Virtual Trackball , Graphics Gems, A.S. Glassner, ed. , vol. I,
chapter 9, pp. 462-463, Academic Press, 1990.

[29] J. V. Jose and E. J. Saletan, Classical Dynamics: A Contemporary Approach.,
Cambridge Univ. Press, Cambridge, 1998

[30] J. Kuipers, Quaternions and Rotation Sequences, Princeton Univ. Press, Prince-
ton, 1999

[31] C. W. Misner, K. S. Thorne, and J. A. Wheeler, Gravitation, W. H. Freeman,
1973

[32] B. Palais and R. Palais, Euler’s Fixed Point Theorem: The Axis of a Rotation.
To appear in J. Fixed Point Theory and Applicatons.

[33] B. Palais and R. Palais, and S. Rodi, Euler’s Theorem on The Axis of a Rotation:
Proofs Old and New . To appear

[34] B. Palais, Dirac Belt Trick: About this object. Virtual Math Museum, virtual-
mathmuseum.org, 2008.

[35] R, Penrose, The Road to Reality: A Complete Guide to the Laws of the Universe.,
Jonathan Cape, London, 2004

[36] O. Rodrigues, Des lois géométriques qui regissent les déplacements d’un système
solide dans l’espace. Journal de Mathématiques Pures et Appliquées 5, 1840,
380-440.

[37] H. A. Schwarz, Zur Theorie der hypergeometrischen Reihe, J. reine angew. Math.
75, 292-335, 1873.

[38] J.M. Selig, Introductory Robotics, Prentice Hall, Englewood Cliffs, 1992.
[39] J. M. Selig, Active Versus Passive Transformations in Robotics, IEEE Robotics

& Automation Magazine, Los Alamitos, March 2006 pp. 79–84.
[40] P. Shirley, M. Ashikhmin, M. Gleicher, S. R. Marschner, E. Reinhard, K. Sung,

W. B. Thompson, and P. Willemsen, Fundamentals of Computer Graphics, Sec-
ond Edition, A K Peters, Wellesley, 2005)

[41] K. Shoemake, Arcball Rotation Control. Graphics Gems IV, Academic Press,
Boston, pp. 175–192, 1994.

[42] K. Shoemake, ARCBALL: A user interface for specifying three-dimensional ori-
entation using a mouse./, Proc. Graphics Interface, Morgan Kaufmann, San
Francisco, pp. 151–156. 1992.

16 BOB PALAIS AND RICHARD PALAIS

[43] K. Shoemake, Animating Rotation with Quaternion Curves. Computer Graphics
(SIGGRAPH ’85 Proceedings held in San Francisco, CA), Vol. 19, No 3, pp.
245–254, July, 1985

[44] K. Shoemake, Quaternion Calculus and Fast Animation, Computer Animation:
3-D Motion Specification and Control. SIGGRAPH 1987 Tutorial, pp. 101–121,
1987.

[45] R. A. Spurrier, Comment on “Singularity-Free Extraction of a Quaternion from
a Direction-Cosine Matrix”. Journal of Spacecraft and Rockets, Vol. 15, July
1978, p. 255.

[46] J. Stillwell, The Story of the 120-Cell , Notices. Amer. Math. Soc. 48, 17–24,
2001.

[47] J. P. Ward, Quaternions and Cayley Numbers., Kluwer, Dordrecht, 1997
[48] C. Wessel, Om directionens analytiske betegning , Proc. Royal Danish Academy

of Sciences and Letters, 1799
[49] C. Wessel, On the Analytical Representation of Direction, Kgl. Danske Vidensk-

abernes Selskab, Copenhagen,1999 (Add see also my Flash animation of deriva-
tion of complex multiplication from rotation)

[50] J. Wolf, Spaces of Constant Curvature, Publish or Perish, Berkeley, 1977

Dept. of Math. The Univ. of Utah Salt Lake City, UT 84112

Dept. of Math. 103 MSTB Univ. of California at Irvine Irvine, CA 92697

E-mail address:

palais@math.utah.edu

palais@uci.edu

