Lambda Calculus

Numerals

We introduce terms to represent arithmetic in λ -calculus

NOTATION For terms $F, A \in \Lambda$ and $n \in \mathbb{N}$ define $F^n A$ as follows

$$F^{0}A \triangleq A$$

$$F^{k+1}A \triangleq F(F^{k}A)$$

Thus $F^2A = F(FA)$, $F^3A = F(F(FA))$

DEFINITION (i) The *Church numerals* are c_0, c_1, c_2, \ldots with

$$\mathbf{c}_n \triangleq \lambda f x. f^n x$$

(ii) A function $f: \mathbb{N}^k \to \mathbb{N}$ is called λ -definable if there is a term $F \in \Lambda$ such that for all $\vec{n} \in \mathbb{N}^k$ one has

$$F\mathbf{c}_{n_1}\dots\mathbf{c}_{n_k}=\mathbf{c}_{f(n_1,\dots,n_k)}$$

HB

Define

$$F_{+} = \lambda nm\lambda fx.nf(mfx)$$

 $F_{*} = \lambda nm\lambda fx.n(mf)x$
 $F_{\exp} = \lambda nm\lambda fx.mnfx$

These functions λ -define addition, multiplication, and exponentiation

$$F_+ \mathbf{c}_n \mathbf{c}_m =_{\beta} \mathbf{c}_{n+m}$$
 $F_* \mathbf{c}_n \mathbf{c}_m =_{\beta} \mathbf{c}_{n \cdot m}$
 $F_{\text{exp}} \mathbf{c}_n \mathbf{c}_m =_{\beta} \mathbf{c}_{m^n}$

We verify this only for F_+

$$F_{+}\mathbf{c}_{n}\mathbf{c}_{m} =_{\beta} \lambda fx.\mathbf{c}_{n}f(\mathbf{c}_{m}fx) =_{\beta} \lambda fx.f^{n}(f^{m}x) \equiv \lambda fx.f^{n+m}x \equiv \mathbf{c}_{n+m}$$

Corollary. The function $f: \mathbb{N} \to \mathbb{N}$, with $f(n) = (n+2)^3$, is λ -definable

The predecessor function

This is $p: \mathbb{N} \to \mathbb{N}$ with p(0) = 0, p(n+1) = n

Define

$$\langle M, N \rangle \triangleq \lambda z.zMN$$

true $\triangleq \mathsf{K} \triangleq \lambda x_1 x_2.x_1$

false $\triangleq \mathsf{K}_* \triangleq \lambda x_1 x_2.x_2$
 $\mathsf{P}_1 \triangleq \lambda a.a\,\mathsf{K}$
 $\mathsf{P}_2 \triangleq \lambda a.a\,\mathsf{K}_*$

Then we can find the components from a pair:

$$P_i\langle M_1, M_2 \rangle = \langle M_1, M_2 \rangle (\lambda x_1 x_2 . x_i) = (\lambda x_1 x_2 . x_i) M_1 M_2 = M_i$$

In order to λ -define the predecessor p we do it for " $n \rightsquigarrow \langle n, p(n) \rangle$ " I.e. $0 \rightsquigarrow \langle 0, 0 \rangle$, $1 \rightsquigarrow \langle 1, 0 \rangle$, $2 \rightsquigarrow \langle 2, 1 \rangle$, $3 \rightsquigarrow \langle 3, 2 \rangle$...

Let
$$T = \lambda p.\langle F_+(\mathsf{P}_1 p) \mathbf{c}_1, \mathsf{P}_1 p \rangle$$
. Then $T\langle \mathbf{c}_n, \mathbf{c}_m \rangle = \langle \mathbf{c}_{n+1}, \mathbf{c}_n \rangle$

Note that

$$\langle \mathbf{c}_0, \mathbf{c}_0 \rangle \leadsto^T \langle \mathbf{c}_1, \mathbf{c}_0 \rangle \leadsto^T \langle \mathbf{c}_2, \mathbf{c}_1 \rangle \leadsto^T \langle \mathbf{c}_3, \mathbf{c}_2 \rangle \leadsto^T \dots$$

Hence $T^k\langle \mathbf{c}_0, \mathbf{c}_0 \rangle = \langle \mathbf{c}_k, \mathbf{c}_{k-1} \rangle$ Taking $P \triangleq \lambda n. P_2(nT\langle \mathbf{c}_0, \mathbf{c}_0 \rangle)$ one has

$$P\mathbf{c}_{0} \equiv (\lambda n. \mathsf{P}_{2}(nT\langle\mathbf{c}_{0},\mathbf{c}_{0}\rangle))\mathbf{c}_{0}$$

$$= \mathsf{P}_{2}(\mathbf{c}_{0}T\langle\mathbf{c}_{0},\mathbf{c}_{0}\rangle)$$

$$= \mathsf{P}_{2}\langle\mathbf{c}_{0},\mathbf{c}_{0}\rangle$$

$$= \mathbf{c}_{0} \equiv \mathbf{c}_{p(0)}$$

$$P\mathbf{c}_{k+1} \equiv (\lambda n. \mathsf{P}_{2}(nT\langle\mathbf{c}_{0},\mathbf{c}_{0}\rangle))\mathbf{c}_{k+1}$$

$$= \mathsf{P}_{2}(T^{k+1}\langle\mathbf{c}_{0},\mathbf{c}_{0}\rangle)$$

$$= \mathsf{P}_{2}\langle\mathbf{c}_{k+1},\mathbf{c}_{k}\rangle$$

$$= \mathbf{c}_{k} \equiv \mathbf{c}_{p(k+1)}$$

Therefore $P\mathbf{c}_k = \mathbf{c}_{p(k)}$ for all $k \in \mathbb{N}$. Hence p is λ -definable by P

Church's Thesis

Thesis: Let the function $f: \mathbb{N}^k \to \mathbb{N}$ be given.

Then f is computable by a human if and only if it is λ -definable

Then Church went on constructing a function that is not λ -defiable hence by his thesis, not human computable

Data types

We give two examples: natural numbers and trees

Natural numbers:

```
Nat := zero | suc Nat
```

Tree := leaf | pair Tree Tree

Equivalently, as a context-free grammar

Nat
$$\rightarrow$$
 z | (s Nat)

Tree \rightarrow 1 | (p Tree Tree)

We know what belongs to it

Nat =
$$\{z, (sz), (s(sz)), (s(s(sz))), ...\} = \{s^n z \mid n \in \mathbb{N}\}$$

Tree := 1 | (p Tree Tree)

Examples of elements of (language defined by) Tree

Translating data into lambda terms (Böhm-Berarducci)

Nat:
$$\mathsf{t} \leadsto \lceil \mathsf{t} \rceil := \lambda \mathsf{sz.t}$$

For example

$$\lceil (\mathtt{s}(\mathtt{s}(\mathtt{sz})))
ceil = \lambda \mathtt{sz.}(\mathtt{s}(\mathtt{s}(\mathtt{sz}))) = \mathbf{c}_3$$

$$\mathsf{Tree}\colon \ \mathsf{t} \leadsto \lceil \mathsf{t} \rceil := \lambda \mathsf{pl.t}$$

For example

$$\lceil (\mathtt{pl}(\mathtt{pll})) \rceil = \lambda \mathtt{pl.}(\mathtt{pl}(\mathtt{pll}))$$

Operating on data after representing them

For Nat we could operate on the codes to represent wanted functions:

$$egin{array}{lll} \mathbf{F}_{+} & \mathbf{n}^{ op} & \mathbf{m}^{ op} & =_{eta} & \mathbf{n} + \mathbf{m}^{ op} \ \mathbf{F}_{ imes} & \mathbf{n}^{ op} & =_{eta} & \mathbf{n} imes \mathbf{m}^{ op} \end{array}$$

Define on Trees the operation of mirroring:

$$Mirror (1) = 1$$

$$Mirror (p t1 t2) = (p (Mirror t2) (Mirror t1))$$

We will construct a λ -term F_M such that

$$F_M \lceil t \rceil = \lceil \mathsf{Mirror}(t) \rceil$$

Representing the basic operation on Tree

LEMMA. There exists a $P \in \Lambda$ such that

$$P^{\lceil \mathbf{t_1}^{\rceil \lceil \mathbf{t_2}^{\rceil}} = \lceil \mathbf{pt_1} \mathbf{t_2}^{\rceil} \tag{1}$$

PROOF. Taking $P:=\lambda t_1t_2pl.p(t_1pl)(t_2pl)$ we claim that (1) holds.

Note that $t \in Tree$ can be considered as a λ -term: $Tree \subseteq \Lambda$

Since $\lceil \mathsf{t} \rceil = \lambda \mathsf{pl.t}$ one has $\lceil \mathsf{t} \rceil \mathsf{pl} =_{\beta} \mathsf{t.}$ Hence

$$P\lceil \mathbf{t}_1 \rceil \lceil \mathbf{t}_2 \rceil = (\lambda \mathbf{t}_1 \mathbf{t}_2 \mathbf{pl}. \mathbf{p}(\mathbf{t}_1 \mathbf{pl})(\mathbf{t}_2 \mathbf{pl})) \lceil \mathbf{t}_1 \rceil \lceil \mathbf{t}_2 \rceil$$

$$= \lambda \mathbf{pl}. \mathbf{p}(\lceil \mathbf{t}_1 \rceil \mathbf{pl})(\lceil \mathbf{t}_2 \rceil \mathbf{pl})$$

$$= \lambda \mathbf{pl}. \mathbf{pt}_1 \mathbf{t}_2$$

$$= \lceil \mathbf{pt}_1 \mathbf{t}_2 \rceil. \blacksquare$$

HB Reflection fall 2013

PROPOSITION. There exists an $F_M \in \Lambda$ such that for all $t \in Tree$

$$F_M \lceil \mathbf{t} \rceil =_{\beta} \lceil \mathsf{Mirror}(\mathbf{t}) \rceil \tag{2}$$

PROOF. Take $F_M \triangleq \lambda \text{tpl.tp'l}$, where $p' \triangleq \lambda \text{ab.pba}$. We claim by induction that (2) holds. Note that $F_M \text{tpl} = \text{tpll}$. Case t=1. Then

$$F_M \lceil \mathbf{1} \rceil = \lambda \mathtt{pl.}(\lambda \mathtt{pl.l}) \mathtt{p'l} = \lambda \mathtt{pl.l} = \lceil \mathbf{1} \rceil = \mathtt{Mirror}(\lceil \mathbf{1} \rceil).$$

Case $t = pt_1t_2$. Then

```
F_{M}\lceil \mathsf{pt}_{1}\mathsf{t}_{2}\rceil = \lambda \mathsf{pl}.\lceil \mathsf{pt}_{1}\mathsf{t}_{2}\rceil \mathsf{p'l}
= \lambda \mathsf{pl}.\mathsf{p'}(\mathsf{t}_{1}\rceil \mathsf{rt}_{2}\rceil \mathsf{p'l})
= \lambda \mathsf{pl}.\mathsf{p'}(\lceil \mathsf{t}_{1}\rceil \mathsf{p'l})(\lceil \mathsf{t}_{2}\rceil \mathsf{p'l})
= \lambda \mathsf{pl}.\mathsf{p}(\lceil \mathsf{t}_{2}\rceil \mathsf{p'l})(\lceil \mathsf{t}_{1}\rceil \mathsf{p'l})
= \lambda \mathsf{pl}.\mathsf{p}(F_{M}\lceil \mathsf{t}_{2}\rceil \mathsf{pl})(F_{M}\lceil \mathsf{t}_{1}\rceil \mathsf{pl})
= \lambda \mathsf{pl}.\mathsf{p}(\lceil \mathsf{Mirror}(\mathsf{t}_{2})\rceil \mathsf{pl})(\lceil \mathsf{Mirror}(\mathsf{t}_{1})\rceil \mathsf{pl}), \quad \text{by the IH,}
= \lceil \mathsf{p}(\mathsf{Mirror}(\mathsf{t}_{2}))(\mathsf{Mirror}(\mathsf{t}_{1}))\rceil
= \lceil \mathsf{Mirror}(\mathsf{pt}_{1}\mathsf{t}_{2})\rceil. \blacksquare
```