Lambda Calculus

Numerals

We introduce terms to represent arithmetic in A\-calculus

NOTATION For terms F, A€\ and n€N define " A as follows
’A = A
FFlA 2 F(FFA)
Thus F?A = F(FA), F°A= F(F(FA))
DEFINITION (i) The Church numerals are cg, ¢y, Cs, ... with
C, =Mz fhx
(ii) A function f:N*—N is called A-definable if there is a term F'eA

such that for all 7eN* one has

FCmL .. an = Cf(nl _____ ng)

HB Reflection fall 2013

Some representable functions

Define
F, = AnmAfz.nf(mfo)
F. = dnmAfexn(mf)x
Fexp = AnmAfr.mnfx
These functions A-define addition, multiplication, and exponentiation
Fic,cpn =3 Cpim
F.chCn =5 Cpm
Fexp Cn €y =3 Cpyn
We verify this only for F',
Ficocm =g Mfr.cof(cnfr) = MNfa.f"(f"x) = Afo.f"T"r = crim
Corollary. The function f:N—N, with f(n) = (n + 2), is A-definable

HB Reflection fall 2013

The predecessor function

This is p: N —N with p(0) =0, p(n+1) =n
Define

=
=
>

Nz.zMN

A

K =)\%13?2.1‘1
A

K* —)\$1£IZ’2.ZIZ’2

-U
[

> 1> {l> []>
>
S
S
P

Then we can find the components from a pair:

PZ'<M1, M2> = <M1, M2>()\5171332..277;) — ()\Qflxg.ilfi)MlMQ = Mz

HB Reflection fall 2013

Construction

In order to A-define the predecessor p we do it for “n ~» (n,p(n))"
le. 0~ (0,0), 1~ (1,0, 2~ (2,1), 3~ (3,2) ...

Let "= Ap.(Fy (P1p)cy, P1p). Then T{(c,,cn) = (Cpi1,Cpn)
Note that

(co, €o) ~T (c1, €o) ~" (C2,€1) ~" (c3, C2) ~T

Hence T%{(cy, co) = (ci, cp_1) Taking P = An.Po(nT(cy, co)) one has

Pco = (Mn.P2(nT{co,co)))co
= Pa2(coT{co,co))
= P2{co,co)
= Co = Cp(0)
Pcrr1 = (Mn.P2(nT{co,co)))Ck+1

Po(T*(co, co))

= P2(cr+1,ck)

= Ck = Cp(k+1)

Therefore Pcy, = ¢, for all keN. Hence p is A-definable by P

HB Reflection fall 2013

Church’s Thesis

Thesis: Let the function f:N*—=N be given.
Then f is computable by a human if and only if it is A-definable

Then Church went on constructing a function that is not A-defiable

hence by his thesis, not human computable

HB Reflection fall 2013

Data types

We give two examples: natural numbers and trees

Natural numbers:

Nat := zero | suc Nat

Tree := 1leaf | pair Tree Tree

Equivalently, as a context-free grammar

Nat — z | (s Nat)

Tree — 1 | (p Tree Tree)

We know what belongs to it

Nat = {z, (sz),(s(sz2)),(s(s(s2))),..

.} = {s"z | neN}

HB Reflection

fall 2013

Trees

Tree := 1 | (p Tree Tree)

Examples of elements of (language defined by) Tree

(pl(pl11)) and (p(pl(pll))1)
p
l/\ /\
p
z/\z /\
/\
[[

HB Reflection

fall 2013

Translating data into lambda terms (Bohm-Berarducci)

Nat: t~ 't := \sz.t

For example

(s(s(s2))) = Asz.(s(s(sz))) = c3

Tree: t~ 't = \pl.t

For example
(p1(p11)) = Apl.(p1l(pll))

HB Reflection

fall 2013

Operating on data after representing them

For Nat we could operate on the codes to represent wanted functions:

F,n''m =5 n+m

F TTTT =3 TnXmT

Define on Trees the operation of mirroring:

Mirror (1) = 1
Mirror (p t1 t2) = (p (Mirror t2) (Mirror t1))

We will construct a A-term F'y; such that

Fy't' = Mirror(t)

HB Reflection fall 2013

Representing the basic operation on Tree

LEMMA. There exists a P€A such that

PROOF. Taking P: = At;topl.p(tipl)(tapl) we claim that (1) holds.
Note that t&€Tree can be considered as a M\-term: Tree C A

Since 't = Apl.t one has 't pl =5 t. Hence

Pty 'ty = (Atytopl.p(tipl)(tepl)) 1 to
= Apl.p(ti p1)(t2 p1)
= Apl.ptit,
= 'ptit, . N

HB Reflection fall 2013

Representing mirroring in A

PROPOSITION. There exists an Fj;€A such that for all t€Tree
Fy/'t = Mirror(t) (2)

PROOF. Take Fy; = Atpl.tp'l, where p’ £ \ab.pba. 7 o
We claim by induction that (2) holds. Note that F; t pl = t p'l.
Case t=1. Then

Fry'l'=Apl.(Apl.1)p'L = A\pl.1 = 1' =Mirror('1)).

Case t = ptity. Then

Far'ptita! = Apl.'ptits p'l
= AplP't; t,'p'l
= Aplp'(‘t1p1)('t2'p'1)
= Aplp('t2 p'1)('t1 p1)
= Apl.p(Fa't2 pl)(Fas't1'pl)
= Apl.p(Mirror(tsz) 'pl)(Mirror(t:) 'pl), by the IH,
= 'p(Mirror(t:))(Mirror(t;))'
= 'Mirror(ptit:) . m

HB Reflection fall 2013

