Google-code-prettify Example
Following is prettified code using google-code-prettify.
package vmm.core;
/**
* A complex number, with a real and an imaginary part. (Possibley to be replaced with
* a class that has better support for complex arithmetic and functions of a complex variable.)
*/
public class Complex {
public double re, im;
/**
* Create a complex number initially equal to zero
*/
public Complex() {
}
/**
* Create a complex number initially equal to the real number x.
*/
public Complex(double x) {
re = x;
}
/**
* Create a complex number initially equal to x + iy
*/
public Complex(double x, double y) {
re = x;
im = y;
}
/**
* Create a new complex number that is initially equal to a given complex number.
* @param c The complex number to be copied. If null, it is treated as zero.
*/
public Complex(Complex c) {
copy(c);
}
public static final Complex ZERO_C = new Complex(0,0);
public static final Complex ONE_C = new Complex(1,0);
public static final Complex I_C = new Complex(0,1);
/**
* Returns true if obj is equal to this complex number. If obj is null or is not
* of type Complex, the return value is false.
*/
public boolean equals(Object obj) {
try {
Complex c = (Complex)obj;
return c.re == re && c.im == im;
}
catch (Exception e) {
return false;
}
}
/**
* Computes the conjugate of a complex number.
*/
public Complex conj() {
return new Complex( re, -im );
}
/**
* Returns the complex number (r*cos(theta)) + i*(r*sin(theta)).
*/
public static Complex polar(double r, double theta) {
return new Complex(r*Math.cos(theta),r*Math.sin(theta));
}
/**
* Sets this complex number equal to a copy of a given number.
* @param c The number to be copied; if null, the number is treated as zero.
*/
public void copy(Complex c) {
if (c == null)
re = im = 0;
else {
re = c.re;
im = c.im;
}
}
/**
* Returns this + c; c must be non-null.
*/
public Complex plus(Complex c) {
return new Complex(re + c.re, im + c.im);
}
/**
* Returns this - c; c must be non-null.
*/
public Complex minus(Complex c) {
return new Complex(re - c.re, im - c.im);
}
/**
* Returns this * c; c must be non-null.
*/
public Complex times(Complex c) {
return new Complex(re*c.re - im*c.im, re*c.im + im*c.re);
}
/**
* Returns this / c; c must be non-null.
*/
public Complex dividedBy(Complex c) {
double denom = c.re*c.re + c.im*c.im;
if (denom == 0)
return new Complex(Double.NaN,Double.NaN);
else
return new Complex( (re*c.re+im*c.im)/denom, (im*c.re-re*c.im)/denom);
}
public Complex times(double x) {
return new Complex(re*x, im*x);
}
public Complex plus(double x) {
return new Complex(re+x, im);
}
public Complex minus(double x) {
return new Complex(re-x, im);
}
public Complex dividedBy(double x) {
return new Complex(re/x, im/x);
}
/**
* Returns the absolute value squared of this.
* @return real part squared plus imaginary part squared
*/
public double abs2() {
return (re*re + im*im);
}
/**
* Returns the absolute value, "r" in polar coordinates, of this.
* @return the square root of (real part squared plus imaginary part squared)
*/
public double r() {
return Math.sqrt(re*re + im*im);
}
/**
* Returns arg(this), the angular polar coordinate of this complex number, in the range -pi to pi.
* The return value is simply Math.atan2(imaginary part, real part).
*/
public double theta() {
return Math.atan2(im,re);
}
/**
* Computes the complex exponential function, e^z, where z is this complex number.
*/
public Complex exponential() {
double length = Math.exp(re);
return new Complex( length*Math.cos(im), length*Math.sin(im) );
}
/**
* Computes the complex reciprocal function, 1/z, where z is this complex number.
*/
public Complex inverse() {
double length = re*re+im*im;
return new Complex( re/length, -im/length );
}
public Complex log() {
double modulus = Math.sqrt(re*re + im*im);
double arg = Math.atan2(im,re);
return new Complex(Math.log(modulus), arg);
}
/**
* Computes that complex logarithm of this complex number
* that is nearest to previous.
* A test code is in fractals.TestAnalyticContinuation.
*/
public Complex logNearer(Complex previous) {
Complex c = new Complex(this.log());
double h = (c.im - previous.im)/(2*Math.PI);
double d = (2*Math.PI)*Math.floor(h+0.5);
c.im = c.im - d;
return c;
}
public double sinh(double x) {
return (Math.exp(x) - Math.exp(-x))/2;
}
public double cosh(double x) {
return (Math.exp(x) + Math.exp(-x))/2;
}
public Complex sine() {
double x, y;
Complex z = new Complex(0.0,0.0);
x = re;
y = im;
z.re = Math.sin(x) * cosh(y);
z.im = Math.cos(x) * sinh(y);
return z;
}
public Complex power(double x) {
double modulus = Math.sqrt(re*re + im*im);
double arg = Math.atan2(im,re);
double log_re = Math.log(modulus);
double log_im = arg;
double x_log_re = x * log_re;
double x_log_im = x * log_im;
double modulus_ans = Math.exp(x_log_re);
return new Complex(modulus_ans*Math.cos(x_log_im), modulus_ans*Math.sin(x_log_im));
}
/**
* Return a complex k-th root of this complex number. The root that is returned is
* the one with the smallest positive arg.
* (If k is 0, the return value is 1. If k is negative, the value is 1/integerRoot(-k).)
*/
public Complex integerRoot(int k) {
double a,b;
boolean neg = false;
if (k < 0) {
k = -k;
neg = true;
}
if (k == 0) {
a = 1;
b = 0;
}
else if (k == 1) {
a = re;
b = im;
}
else {
double length = r();
double angle = theta();
if (angle < 0)
angle += Math.PI*2;
length = Math.pow(length,1.0/k);
angle = angle / k;
a = length*Math.cos(angle);
b = length*Math.sin(angle);
}
if (neg) {
double denom = a*a + b*b;
a = a/denom;
b = -b/denom;
}
return new Complex(a,b);
}
/**
* Computes that square root of this complex number
* that is nearer to previous than to minus previous.
* A test code is in fractals.TestAnalyticContinuation.
*/
public Complex squareRootNearer(Complex previous) {
Complex c;
c = this.integerRoot(2);
if (c.re*previous.re + c.im*previous.im < 0){
c.re=-c.re;
c.im=-c.im;
}
return new Complex(c.re, c.im);
}
public double[] stereographicProjection() {
double rsquare,rsquarePlusOne;
double [] projPoint = new double[3];
rsquare = re * re + im * im;
rsquarePlusOne = rsquare + 1;
projPoint[0] = (2 * re)/rsquarePlusOne;
projPoint[1] = (2 * im)/rsquarePlusOne;
projPoint[2] = (rsquare - 1)/rsquarePlusOne;
return projPoint;
}
}