
fsu-logo

Order theory
Galois Connections

GC and Abstract Interpretation
Examples

Order Theory, Galois Connections and
Abstract Interpretation

David Henriques

Carnegie Mellon University

November 7th 2011

David Henriques Order Theory 1/ 40



fsu-logo

Order theory
Galois Connections

GC and Abstract Interpretation
Examples

Order Theory

David Henriques Order Theory 2/ 40



fsu-logo

Order theory
Galois Connections

GC and Abstract Interpretation
Examples

Orders are everywhere

I 0 ≤ 1 and 1 ≤ 1023

I Two cousins have a common grandfather

I 22/7 is a worse approximation of π than 3.141592654

I aardvark comes before zyzzyva

I a seraphim ranks above an angel

I rock beats scissors

I neither {1, 2, 4} or {2, 3, 5} are subsets of one another, but
both are subsets of {1, 2, 3, 4, 5}

Actually, there is an intruder in this list. Can you spot it?

It’s not easy, we need a formal treatment of order!
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What should we require from an order?

Partial Order
Let S be a set. A relation v in S is said to be a partial order
relation if it has the following properties

I if a v b and b v a then b = a (anti-symmetry)

I if a v b and b v c then a v c (transitivity)

I a v a (reflexivity)

The pair (S ,v) is said to be a partial order.

Why these properties?

I they correspond to intuitive notions of order

I structures that share these properties have a lot of common
behavior

David Henriques Order Theory 4/ 40
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Examples - Natural Numbers

(N,≤)

I if a ≤ b and b ≤ a then a = b

I if a ≤ b and b ≤ c then a ≤ c

I a ≤ a

Well... this was not very informative

David Henriques Order Theory 5/ 40
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Examples - Rock, paper, scissors

({�, �, �}, “beats”)

I We don’t have that � beats �

David Henriques Order Theory 6/ 40



fsu-logo

Order theory
Galois Connections

GC and Abstract Interpretation
Examples

Examples - Rock, paper, scissors

({�, �, �}, “beats”)

I We don’t have that � beats �

David Henriques Order Theory 6/ 40



fsu-logo

Order theory
Galois Connections

GC and Abstract Interpretation
Examples

Examples - Rock, paper, scissors

Let’s try again
({�, �, �}, “is not beaten by”)

I It’s reflexive (e.g. � is not beaten by �)

I It’s antisymmetric (e.g. � is not beaten by � means we
can’t heave � is not beaten by �)

I It’s NOT transitive (� is not beaten by � is not beaten by
� . But We don’t have that � is not beaten by �)

David Henriques Order Theory 7/ 40
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Examples - Subset inclusion

(P(S),⊆)

I if P ⊆ Q and P ⊆ Q then P = Q

I if P ⊆ Q and Q ⊆ R then P ⊆ R

I P ⊆ P
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Examples - Subset inclusion

What about sets like {1, 2, 4} and {3, 4, 5}, which one is “bigger”?

Well... none
In general, we don’t require all elements to be comparable amongst

themselves.

Total Order
Let (S ,v) be a partial order. Then (S ,v) is called a total order if

I for all a, b ∈ S , a v b or b v a (totality)

David Henriques Order Theory 9/ 40



fsu-logo

Order theory
Galois Connections

GC and Abstract Interpretation
Examples

Examples - Subset inclusion

What about sets like {1, 2, 4} and {3, 4, 5}, which one is “bigger”?

Well... none
In general, we don’t require all elements to be comparable amongst

themselves.

Total Order
Let (S ,v) be a partial order. Then (S ,v) is called a total order if

I for all a, b ∈ S , a v b or b v a (totality)

David Henriques Order Theory 9/ 40



fsu-logo

Order theory
Galois Connections

GC and Abstract Interpretation
Examples

Examples - Subset inclusion

What about sets like {1, 2, 4} and {3, 4, 5}, which one is “bigger”?

Well... none
In general, we don’t require all elements to be comparable amongst

themselves.

Total Order
Let (S ,v) be a partial order. Then (S ,v) is called a total order if

I for all a, b ∈ S , a v b or b v a (totality)

David Henriques Order Theory 9/ 40



fsu-logo

Order theory
Galois Connections

GC and Abstract Interpretation
Examples

Examples - Subset inclusion induced orders

Subset inclusion induces orderings in may algebraic structures

I subgroup orderings (used in Galois Theory)

I subfield orderings (aka towers, also used in GT)

I subspaces (used in linear Algebra and Geometry)

I ideals of rings (used pretty much everywhere)

I ...
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Bounds, suprema, infima

Let (S ,v) be a partial order and P ⊆ S . An element b ∈ S is said
to be:

I an upper bound of P if ∀p ∈ P, b v b

I a lower bound of P if ∀p ∈ P, b v p

I the supremum of P if b is the least upper bound of P:
b is u.b. of P and if b′ is an u.b. of P, b v b′

I the infimum of P if b is the greatest lower bound of P:
b is l.b. of P and if b′ is a l.b. of P, b′ v b

David Henriques Order Theory 11/ 40
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Meet and Join

The functions that return suprema and infima are called,
respectively, join and meet:

meet and join

I
∧

: P(S)→ S ,
∧

(P) = b, b infimum of P is the meet
function.

I
∨

: P(S)→ S ,
∨

(P) = b, b supremum of P is the join
function.

David Henriques Order Theory 12/ 40
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Warning

Suprema and infima are not guaranteed to exist!

Fortunately, we will generally work in structures where meets and
joins exist!

David Henriques Order Theory 13/ 40
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Lattices

Lattice
Let (S ,v) be a partial order. (S ,v) is a lattice if the meet and
join of any pair of elements of S always exists.

Complte Lattice

Let (S ,v) be a partial order. (S ,v) is a complete lattice if the
meet and join of any subset of elements of S always exists.

Top and Bottom

Let (S ,v) be a complete Lattice. Then

I > =
∨

S is an u. b. of any subset of S and called the top of S

I ⊥ =
∧
S is a l. b. of any subset of S and called the bottom

of S

David Henriques Order Theory 14/ 40
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Monotonicity and Continuity

Monotonicity and Continuity

Let (S ,v) be a complete lattice. Let f : S → S be a function. We
say f is

I monotonic if, for a v b, then f (a) v f (b)

I
∨

-continuous if, for every a1 v a2 v ..., then
f (
∨

ai ) =
∨
f (ai )

I
∧

-continuous if, for every a1 w a2 w ..., then
f (
∧

ai ) =
∧
f (ai )

David Henriques Order Theory 15/ 40
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An old f(r)iend revisited

Tarski’s fixed point lemma

Let (S ,v) be a complete lattice. Let f : S → S be a monotonic
function.
Then the set of fixed points of f is also a complete lattice.
In particular it has a top (the gfp of f) and a bottom (the lfp of f)

David Henriques Order Theory 16/ 40
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Galois Connections
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Monotone Galois Connection

Let 〈X ,≤〉 and 〈Y ,v〉 be complete lattices. Let L : X → Y and
U : Y → X .
Then we say that (〈X ,≤〉, 〈Y ,v〉), L,U is a (monotone) Galois
Connection if, for all x ∈ X , y ∈ Y :

L(x) v y iff x ≤ U(y)

L is called the lower adjoint (of U) and U is called the upper
adjoint (of L).

David Henriques Order Theory 18/ 40
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Examples

I L(x) = ⊥Y

,U(y) = >X

I X = 2N,Y = 2N + 1,L(x) = x + 1

,U(y) = y − 1

I X = 2N,Y = 2N + 1,L(x) = x + 3

,U(y) = y − 3

I X ,Y , L is a bijective function,U = L−1

David Henriques Order Theory 19/ 40
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Examples - The Functional Abstraction

Let S1 and S2 be sets, f : S1 → S2 and

L(A) = {f (a)|a ∈ A} U(B) = {a|f (a) ∈ B}

Then
(〈P(S1),⊆〉, 〈P(S2),⊆〉, L,U)

is a Galois Connection.

Proof: L(A) = {f (a)|a ∈ A} ⊆ B iff ∀a∈Af (a) ∈ B iff
A ⊆ {a|f (a) ∈ B} = U(B)

David Henriques Order Theory 20/ 40
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Why is this useful?
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Duality

Let 〈X ,≤〉, 〈Y ,v〉, L,U be a Galois connection,
Then 〈Y ,w〉, 〈X ,≥〉,U, L is a Galois connection.

Proof: L(x) v y iff x ≤ U(y) ⇔ U(y) ≥ x iff y w L(x)

David Henriques Order Theory 22/ 40
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Composition

Let 〈X ,≤〉, 〈Y ,v〉, L1,U1 and 〈Y ,v〉, 〈Z ,�〉, L2,U2 be GCs.
Then 〈X ,≤〉, 〈Z ,�〉, L2 ◦ L1,U1 ◦ U2 is a GC

Proof:
L2(y) � z iff y v U2(z). Take y = L1(x).
Then L2(L1(x)) � z iff L1(x) v U2(z) iff x ≤ U1(U2(z))

David Henriques Order Theory 23/ 40
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Cancellation and Monotonicity

Let 〈X ,≤〉, 〈Y ,v〉, L,U be GC.
Then

1. x ≤ U(L(x)) and L(U(y)) v y

2. Both U and L are monotonic.

Proof:

1. L(x) v L(x) iff x ≤ U(L(x))

2. x ≤ x ′ ⇒1 x ≤ U(L(x ′))
x ≤ U(L(x ′)) iff L(x) v L(x ′)

David Henriques Order Theory 24/ 40
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Preservation of Infima and Suprema

Let 〈X ,≤〉, 〈Y ,v〉, L,U be a GC.
Then L preserves suprema and U preserves infima, i.e.

L(
∨

X ′) =
⊔

L(X ′) and U(
∧

Y ′) =
l

U(Y ′)

Proof:
Let X ′ 3 x ≤

∨
X ′. By monotonicity of L, L(x) v L(

∨
X ′) and

L(
∨
X ′) is therefore an upper bound of L(X ′).

Let y be another UB of L(X ′). Then, for all x ∈ X ′, L(x) v y iff,
by def, x ≤ U(y). But then

∨
X ′ ≤ U(y) iff, by def, L(

∨
X ′) v y ,

therefore L(
∨
X ′) is the lowest upper bound of L(X ′).

David Henriques Order Theory 25/ 40
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Existence

Let 〈X ,≤〉, 〈Y ,v〉 and L : X → Y such that L preserves suprema.
Then there exists U s.t. 〈X ,≤〉, 〈Y ,v〉, L,U is a GC.

Proof:
Let U = λy .

∨
{x : L(x) v y}.

L(x) v y ⇒ x ∈ {z : L(z) v y} ⇒ x ≤
∨
{z : L(z) v y}

⇔ x ≤ U(y).

x ≤ U(y)⇒ L(x) v L(
∨
{z : L(z) v y}) L monotonic

⇒ L(x) v
⊔
{L(z) : L(z) v y} L preserves suprema

⇒ L(x) v y

David Henriques Order Theory 26/ 40



fsu-logo

Order theory
Galois Connections

GC and Abstract Interpretation
Examples

Transfer Theorem

Let 〈X ,≤〉,〈Y ,v〉 F : X → X monotonic, F ′ : Y → Y monotonic
and L : X → Y preserving suprema.

Then
L ◦ F v F ′ ◦ L iff L(lfp[F ]) v lfp[F ′]

David Henriques Order Theory 27/ 40
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Fixpoint Approximation Theorem

Let 〈X ,≤〉,〈Y ,v〉 F : X → X monotonic and L : X → Y
preserving suprema.

Then, there is F ′ : Y → Y monotonic s.t.

lfp[F ] ≤ U(lfp[F ′])

where U is the upper adjoint of L.

“Proof”: Take F ′ = L ◦ F ◦ U. Apply the Transfer Theorem to get

L(lfp[F ]) v lfp[F ′]

Now apply U, which is continuous to both sides and get the result
by Cancellation on the left.

David Henriques Order Theory 28/ 40
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Time permitting

How everything you’ve ever seen was thought of by Galois!
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Examples

n ≤ bxc iff n ≤ x

real(n) ≤ x iff n ≤ floor(x)

bxc ≤ x

bxc ≤ bxc iff bxc ≤ x

n ≤ bnc

∧ bnc ≤ n ⇔ n = bnc

n ≤ bnc iff n ≤ n

x ≤ y ⇒ bxc ≤ byc

x ≤ y ⇒ bxc ≤ x ≤ y ⇒ bxc ≤ y

bxc ≤ y iff bxc ≤ byc
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I p ∧ q ⇒ r iff q ⇒ p ⇒ r

X ,Y = P, 〈X ,⇒〉, 〈Y ,⇒〉, L = (p ∧ .),U = (p ⇒ .)

I ¬p ⇒ q iff p ⇐ ¬q

X ,Y = P, 〈X ,⇐〉, 〈Y ,⇒〉, L,U = ¬(.)

I Given R ⊆ A× B
〈P(A),⊆〉, 〈P(B),⊆〉,
L(M) = {b : aRb, a ∈ M},U(M) = {a : aRb, b ∈ M}
(antitone GC)
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I Given field K
〈K [x1, ...xn],⊆〉, 〈Kn,⊆〉,
L(I ) = {x ∈ Kn : ∀f ∈ I .f (x) = 0},
U(V ) = {f ∈ K [x1, ...xn] : ∀x ∈ V .f (x) = 0}

I Given mathematical structure M over set X
L(S) = substructure generated by S (S ⊆ X )
U(N) = underlying set of substructure N
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Even more time permitting

Fixed points, closures and isomorphisms
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Order Isomorphisms

An order isomorphism between 〈X ,≤〉,〈Y ,v〉 is a surjective
function h : X → Y that is an order embedding, that is,

h(x) v h(x ′) iff x ≤ x ′

Order isomorphic posets can be considered to be ”essentially the
same” in the sense that one of them can be obtained from the
other just by renaming of elements.

David Henriques Order Theory 35/ 40



fsu-logo

Order theory
Galois Connections

GC and Abstract Interpretation
Examples

Some Lemmas

Let 〈X ,≤〉, 〈Y ,v〉, L,U be a GC.

Then

L(U(L(x))) = L(x) and U(L(U(y))) = U(y)

Proof:
(v) By Cancellation, x ≤ U(L(x)). By monotonicity of L,
L(x) v L(U(L(x))).
(w) L(U(L(x))) v L(x) iff U(L(x)) ≤ U(L(x)) by definition of GC.
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Some Lemmas

Let 〈X ,≤〉, 〈Y ,v〉, L,U be a GC.

Then
x ∈ U(Y ) iff x is a fixed point of U ◦ L and y ∈ L(X ) iff y is a
fixed point of L ◦ U.

Proof:
(⇒) Let x ∈ U(Y ), then there is y s.t. x = U(y). Then
U(L(x)) = U(L(U(y))) = U(y) = x , ie, x is a fixpoint of U ◦ L.
(⇐) Let x = U(L(x)), since L(x) ∈ Y , x ∈ U(Y ).
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Some Lemmas

Let 〈X ,≤〉, 〈Y ,v〉, L,U be a GC.

Then
U(Y ) = U(L(X )) and L(X ) = L(U(Y ))

Proof:
(⊆) x ∈ U(Y ) iff x = U(L(x)), that is x ∈ U(L(X )).
(⊇) x ∈ U(L(X )), then x = U(y) for some y ∈ L(X ) ⊆ Y . So
x ∈ U(Y ).
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Finding Order Isomorphisms

Let 〈X ,≤〉, 〈Y ,v〉, L,U be a GC.

Then
〈U(L(X )),≤〉, 〈L(U(Y )),v〉 are order isomorphic.

Proof:
〈U(L(X )),≤〉 = 〈U(Y ),≤〉 and 〈L(U(Y )),v〉 = 〈L(X ),v〉.
L is the candidate isomorphism.
L surjective onto L(X ) (from U(Y )): y ∈ L(X ) then y = L(x) for
some x ∈ X then y = L(U(L(x))). But U(L(x)) ∈ U(Y ).

David Henriques Order Theory 39/ 40



fsu-logo

Order theory
Galois Connections

GC and Abstract Interpretation
Examples

Finding Order Isomorphisms

Let 〈X ,≤〉, 〈Y ,v〉, L,U be a GC.

Then
〈U(L(X )),≤〉, 〈L(U(Y )),v〉 are order isomorphic.

Proof (contd):
L is an order embedding: We already know L is monotonic.
To prove: L(x) v L(x ′)⇒ x ≤ x ′.
Let L(x) v L(x ′), then U(L(x)) ≤ U(L(x ′)). But since
x , x ′ ∈ U(Y ), U(L(x)) = x and U(L(x ′)) = x ′ and thus x ≤ x ′.
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